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EXECUTIVE SUMMARY 

This project provides an in-depth assessment of market-available connected vehicle (CV) 

data—Wejo CV data in border crossing time estimation. This project evaluates both historical 

and streaming Wejo CV data collected at the Paso del Norte (PDN) port of entry (POE) in 

El Paso. The research team first developed a set of big data analytic tools to process Wejo 

datasets and generated CV-based border crossing times (CV-Time). Then, the research team 

evaluated the temporal coverage of CV-Time at the PDN POE and its correlation with the 

existing Bluetooth-generated border crossing times (Bluetooth-Time). The results demonstrate 

that the CV-Time is strongly correlated with the Bluetooth-Time with a correlation rate of 

approximately 0.8. The best fitted ordinary least squares model based on the combination of 

CV-Time and additional CV-generated variables can produce a temporally transferable model to 

estimate Bluetooth-Time with an R2 of 0.88, root mean square error (RMSE) of about 15 min 

and mean absolute percentage error (MAPE) of 52%. Random forest and gradient boosting 

models were also investigated to decrease the MAPE. The research findings show that the 

gradient boosting has the best performance among the introduced models with an RMSE of 15.5 

min and MAPE of 26%. However, this evaluation was conducted based on the 2022 Wejo data 

with a relatively low penetration rate, resulting in around 30 percent of the testing hours lacking 

Wejo samples. Given these findings, the Wejo CV data can be a potential and promising data 

source for monitoring border crossing times, especially as sample penetration rates improve. The 

Wejo CV data can be used to supplement the existing Border Crossing Information System 

(BCIS) in El Paso and could be treated as an alternative solution when the BCIS is down for 

maintenance. 
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CHAPTER 1: 
INTRODUCTION 

PROBLEM STATEMENT AND BACKGROUND 

Congestion at land ports of entry (POEs) has been socially recognized as a long-standing 

transportation issue for both commercial interests and the traveling public. El Paso, as one of the 

largest border cities in Texas, has a bi-national transportation network with about 20 million 

vehicle miles traveled per day. Driven by the exponential trade growth between the United States 

and Mexico, especially with the United States–Mexico–Canada Trade Agreement entered into 

force, the transportation efficiency at border crossings in El Paso is facing greater challenges. 

Effectively measuring border crossing times is of considerable interest and importance to various 

stakeholders. However, current measurement solutions (e.g., radio frequency identification 

[RFID]) usually require a large installed base of sensors (e.g., transponders and readers), which 

are costly to implement and maintain. These fixed sensors have spatial coverage limitations that 

preclude measuring long queues exceeding their coverage. Effectively and cost-efficiently 

monitor passing vehicles’ crossing times at POEs remains a challenging problem in border 

transport management.  

As the Internet of Things technology has developed over time, connected vehicles (CVs) are 

rapidly becoming the new paradigm of road transport, which has been widely believed to 

positively influence transportation safety, efficiency, and sustainability. CV data are collected 

from vehicles, directly reflecting the dynamics of traffic mobility. For example, Wejo, as a 

leading CV data start-up, provides high sampling and multi-dimensional vehicle movements and 

driving event (e.g., hard braking, hard acceleration, and speeding) data. These emerging CV data 

offer researchers unprecedented, detailed traffic data that are proving to be tremendously helpful 

in gaining new insights into traffic congestion. 

OBJECTIVES 

In this project, the research team explored the use of an emerging crowdsourced data source, 

Wejo CV data, to estimate crossing times for passenger vehicles at border crossings in El Paso. 

To the best of our knowledge, this project is among the first to comprehensively evaluate the 

effectiveness of the market-available CV data in congestion studies at border crossings. Through 

this project, we aimed to: 

• Develop a set of big data analytic tools to process Wejo CV datasets. 

• Evaluate the temporal coverage of Wejo CV data (both historical and streaming) at the 

Paso del Norte (PDN) POE in El Paso and its correlation with the existing Bluetooth-

based border crossing times (Bluetooth-Time). 

• Develop effective models to estimate the Bluetooth-Time based on CV-generated 

variables. 
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IMPACTS AND IMPLICATIONS 

This project marks the first attempt to conduct an in-depth assessment of the 

market-available CV data in border crossing time monitoring. The research team partnered with 

Center for International Intelligent Transportation Research (CIITR) border study experts (David 

Salgado and Swapnil Samant) to develop new solutions to improve the estimations of border 

crossing times by leveraging the state-of-the-art CV data product and cloud computing and 

storage system. This data-driven practice can help transportation and planning agencies, such as 

CIITR, the Texas Department of Transportation (TxDOT), and the El Paso Metropolitan 

Planning Organization, better assess traffic conditions at a much finer spatiotemporal scale and 

effectively recognize highly congested roadway segments. The proposed big data analytic 

framework can be used as a prototype and applied and transferred to other border-crossing 

regions. In the future, once this framework is fully tested and validated, it could be potentially 

used as an infrastructure-less source of travel time data to enhance the current Border Crossing 

Information System (BCIS). 

OUTLINE OF REPORT  

The remaining chapters of this report include the following:  

• Chapter 2—Literature Review: This chapter summarizes the reviewed literature and 

focuses on the existing techniques and emerging data sources for border crossing time 

estimation. 

• Chapter 3—Data Collection and Processing: This chapter presents the study area and 

the different types of data (Bluetooth observations and CV data) processed and used in 

the analysis.  

• Chapter 4—Assessments of CV-Based Border Crossing Times: This chapter presents 

the evaluation of the CV-based border crossing times. We calculated the hourly average 

border crossing times based on the Bluetooth data (Bluetooth-Time) and the Wejo CV-

based border crossing times (CV-Time). Then, we conducted two assessments to evaluate 

the temporal coverage of CV-Time and its correlation with Bluetooth-Time.  

• Chapter 5—Border Crossing Time Modeling Using CV Data: This chapter introduces 

the modeling efforts to improve border crossing time estimation based on CV data. Three 

linear regression models are developed based on the CV-generated variables. 

• Chapter 6—Streaming Data Processing: This chapter summarizes the procedure 

implemented in this study to capture and analyze the steaming CV data and update the 

results in near real-time.  

• Chapter 7—Conclusions and Limitations: This chapter summarizes the study and 

conclusions drawn from the study and covers the project limitations.  
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CHAPTER 2: 
LITERATURE REVIEW 

The inspection of vehicles and passengers at border crossings is of great importance for 

ensuring homeland security; the inspection also incurs various spillover effects on traffic, such as 

increasing border crossing time and the queue length of vehicles. The border crossing time is 

commonly defined as “the time it takes, in minutes, for a vehicle to reach the primary inspection 

booth of the Customs and Border Protection (CBP) after arriving at the end of the queue” 

(Rajbhandari, Villa, Macias, et al. 2012). Providing an accurate and practical crossing time 

estimation is of great importance to advance the understanding of urban flow dynamics and 

support intelligent transportation systems (ITS). Effectively monitoring crossing times and trends 

can not only benefit government agencies for POE management and planning purposes but can 

also support a variety of needs (e.g., when and where to cross the border) of border commuters, 

travelers, and private-sector business (San Diego Association of Governments 2017). This 

chapter reviews the border crossing time trends and effects at the U.S. border and summarizes 

the existing border crossing time measuring techniques, emerging data sources, and potential 

solutions for border crossing time estimation. 

TRENDS AND EFFECTS OF CROSSING TIMES AT U.S. BORDER CROSSINGS 

The United States is bordered by Mexico in the south and Canada in the north, forming some 

of the longest international borders in the world—2,000 and 5,500 miles long, respectively. 

There are 110 border crossings at the U.S.–Canada border and 44 border crossings at the U.S.–

Mexico border (Villa et al. 2017). The majority of the U.S. trade with its largest trading partners, 

Canada and Mexico, is conducted via land transport through its southern or northern borders. As 

reported by Villa et al. (2017), in 2015, more than 28 million private vehicles and 5.8 million 

commercial vehicles entered the United States from Canada, and 74 million private vehicles and 

5.5 million commercial vehicles entered the United States from Mexico. From 2009 to 2015, the 

annual volumes of private and commercial vehicles entering the United States continued to 

increase with an annual growth rate of 1.1 percent and 2.4 percent, respectively. The increase in 

the crossing border vehicle volume results in high crossing times at land POEs. 

Delays at border crossings are costly to bordering nations. Border delays have a negative 

impact on the ability of economies to attract investors, and the cost of goods to consumers is 

increased to cover losses. The tourism industry is also affected negatively, and there are 

environmental impacts of congestion on border communities that cannot be overlooked (Khan 

2010). Estimated by the Ontario Chamber of Commerce, the U.S.–Canada border delays cost 

approximately $4.13 billion per year for the United States, which is about 40 percent of the total 

cost (Khan 2010). Roberts, Rose, et al. (2014) examined the influence of border crossing times 

on the U.S. economy. The authors’ results suggested that crossing time at POEs has significant 

negative impacts on the economy. The value of reduced crossing time by adding one officer 

equals roughly $1.2 million savings for U.S. residents and $0.2 million savings for Mexico 

residents at each U.S.–Mexico land POE. The authors also estimated that the value of reduced 

crossing time at some specific ports by adding an officer is even much greater. For example, 

based on the authors’ estimation, the value of time saved due to adding one officer at the San 
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Ysidro crossing is roughly $25 million (Roberts, Mcgonegal, et al. 2014). Meanwhile, lower 

crossing time will induce more cross-border trips. 

EXISTING TECHNIQUES FOR BORDER CROSSING TIME MONITORING 

For a long time, the only source of POE crossing time was provided by U.S. Customs and 

Border Protection (CBP), which is estimated by using a visual inspection method and random 

survey of truckers waiting at the bridge. However, these estimates are unreliable according to 

shippers and carriers (Rajbhandari and Villa 2012). Traditional crossing time monitoring is 

typically conducted through three main solutions (Villa et al. 2017): 

• Unaided visual observation: The CBP officer records where the formed queue ends in 

relation to predetermined markers. Inspectors use their experience to estimate queue 

density and crossing times.  

• Camera snapshots: Some civilian agencies have installed traffic cameras along the 

POEs. Camera snapshots are publicly available. CBP officers can use snapshots to 

estimate queue and crossing time.  

• Driver surveys: Conducting surveys is the most commonly used method among crossing 

time measurement techniques. The officer working at the primary inspection asks the 

drivers to estimate how long they have been waiting in the queue.  

As part of the effort to deploy ITS at international border crossings, a lot of new techniques 

were deployed to measure and monitor border-crossing times. Basically, three categories of 

approaches are used to measure crossing times at border crossings: queue length measurement, 

fixed point vehicle reidentification, and dynamic vehicle tracking (San Diego Association of 

Governments 2017; Sabean and Jones 2008; Rajbhandari, Villa, Macias, et al. 2012). Queue 

length can be estimated by using technology to measure the arrival and departure rates of 

vehicles and a calibrated model to estimate queue end. Fixed-point vehicle reidentification 

enables the calculation of time spent by a vehicle at a fixed point and between two fixed points. 

From these readings, crossing times can be found but only for archival purposes since such data 

are of little use for a real-time information system. Likewise, dynamic vehicle tracking based on 

the use of a wireless signal emitted by a device placed in the vehicle can generate data on time 

spent at a given spot or between various locations. However, the resulting information has 

archival value only (Khan 2010; Rajbhandari, Villa, Tate, et al. 2012; Ramezani and Geroliminis 

2015). 

• Queue length measurement: The queue length measurement approach uses humans or 

technology to measure the departure and arrival rates of vehicles and estimate the number 

of vehicles in the queue. This estimate is usually based on a measure of the length of the 

queue and an approximate average of the density of vehicles within it. The mainstream 

solutions include inductive loop detectors, ranging radar detectors, and video image 

processing. 

• Fixed-point vehicle reidentification: This method uses technology to identify individual 

vehicles at a fixed point upstream of the queue, and then again at the primary inspection 

booth or at some point beyond the inspection facilities. The time difference between the 

two timestamps provides the travel time between the two points. The crossing time 
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attributed only to the queue can be calculated by subtracting out the average time 

required to travel that distance when there is no queue (i.e., under optimal conditions). 

The mainstream solutions include RFID and license plate recognition. 

• Dynamic vehicle tracking: This approach uses some form of wireless signal to 

determine the location of a vehicle at multiple times along its route. The archived data 

can then be analyzed to determine how far the vehicle traveled between time intervals on 

the approach to the border. The mainstream solutions include cell phone tracking and 

global positioning system (GPS) tracking.  

Comparing the number of arrivals and departures at land border crossings is one of the most 

straightforward solutions to quantify the congested queuing. Roberts, Mcgonegal, et al. 2014 

applied this method to three land border crossings at El Paso, Texas. The length of the queue in 

terms of the number of vehicles is calculated by multiplying the crossing time in that hour by the 

number of departures per minute. RFID is one of the most commonly used technologies at POEs. 

Step-by-step guidance for implanting RFID to measure border crossing times is provided by 

Rajbhandari, Villa, Macias, et al. (2012) and Rajbhandari, Villa, Tate, et al. (2012).  

RFID consists of three subsystems: 

• Field subsystem: The field subsystem contains the transponder detection stations 

including the RFID readers, antennas, communication equipment, and power supply. The 

station identifies transponders carried by commercial vehicles and transmits the data to 

the central subsystem via wireless communication. 

• Central subsystem: The central subsystem receives identification of transponders from 

field stations and performs all data processing to reidentify, filter, and archive the 

crossing and crossing time data. 

• User subsystem. The user subsystem interacts with the central subsystem to provide 

access to users’ archived data as well as real-time data via the internet (Rajbhandari and 

Villa 2012).  

A similar system was deployed by the Niagara International Transportation Technology 

Coalition, which uses Bluetooth identification technology to provide more accurate delay 

estimates to motorists; the information is now updated every five minutes (Lin et al. 2014). 

McCord et al. (2016) developed and implemented an approach to document truck activity times 

associated with crossing POEs by using technologies that are already in use by truck fleets. The 

authors created onboard GPS‐enabled data units containing positioning, navigation, and timing 

systems to track truck movements. These data were transmitted and spatially filtered using 

geofences to analyze truck crossing times at border crossings. 

EMERGING DATA SOURCES FOR BORDER CROSSING TIME ESTIMATION 

The basic ingredient for the new wave of smart cities that has emerged during the last decade 

are massive data sets concerning human mobility, fostered by the widespread distribution of 

sensors, such as GPS devices in many modes of transport, smart phones, and traffic fixed sensors 

(Ramezani and Geroliminis 2015).  
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For example, GPS-equipped floating cars can collect and transmit mobility data periodically 

(usually between every 15 second to 1 min), including longitude, latitude, speed, vehicle 

headings, and timestamps. Massive amounts of mobility data have been accumulated which 

could be exploited to characterize typical traffic conditions. Within the last decade, a broad range 

of transportation research has been conducted based on floating car mobility data. Research 

related to GPS-equipped vehicle mobility data is a hot topic in the field of ITS (An et al. 2016). 

Meanwhile, GPS-enabled devices (e.g., smart phones) or wireless magnetic sensors also can be 

used to identify vehicle movements providing a great potential for probe vehicles in ITS 

applications (Ramezani and Geroliminis 2015). A study—Travel Time Estimation Using Cell 

Phones (TTECP) for Highways and Roadways conducted by Florida Department of 

Transportation has verified that mobile phones and other mobile devices and their respective 

location data as viable sources for travel time; and the reliability, accuracy, and resolution of this 

data, continues to improve as smartphone manufacturers refine or adopt more capable 

components (The San Diego Association of Governments 2017).  

Meanwhile, various wireless technologies (e.g., Bluetooth, Wi-Fi) have been intensively 

utilized in border crossing time estimation. Bluetooth wireless technology is a short-range 

communications technology originally intended to replace the cables connecting portable and/or 

fixed communications devices while maintaining high levels of security. Bluetooth technology is 

included commonly on devices such as smartphones, hands-free kits in vehicles, personal 

computers, wireless headsets, and other devices. The key features of Bluetooth technology are 

robustness, low power, and low cost. Bluetooth is a mature technology that has been in use for 

about 20 years (U.S. Customs and Border Protection 2016; The San Diego Association of 

Governments 2017). Like Bluetooth technology, Wi-Fi is another short-range communications 

technology, which has been utilized in border crossing time systems. Wi-Fi was initially 

designed to provide communications among devices while maintaining high levels of privacy. 

Wi-Fi technology is most often included commonly on modern devices such as smartphones, 

hands-free kits in cars, personal computers, other media streaming devices (The San Diego 

Association of Governments 2017). The research work conducted by U.S. Federal Highway 

Administration (FHWA) also recommend that the Bluetooth solution and the GPS/smartphone 

technology—showed the most promise as viable near-term approaches to automated crossing 

time measurement (Sabean, Lussier, and Pattan 2011). 

CBP is moving forward with developing a hybrid data-driven solution (i.e., no hardware 

deployment required) to estimate border crossing times (U.S. Customs and Border Protection 

2016). This hybrid data solution uses travel data generated from the public sector and CBP’s 

vehicle throughput data to provide automated land border crossing time measurement. CBP 

believes this hybrid solution is developing to be the most viable and cost-effective solution to 

date because no port infrastructure or hardware is required.  

Crowdsourced traffic data are also a promising option in transportation monitoring and 

management. Generally, crowdsourcing leverages the combined intelligence, knowledge data, or 

experience of a group of people (or their devices) to answer a question, solve a problem, or 

manage a process. With the maturation and advancement of mobile sensing techniques and social 

media applications, smartphones have become a promising platform for collecting and sharing 

traffic information. For travel time data collection, crowdsourced methods are the most used 

private-sector mechanism today. Mobile devices carried by drivers or installed in their vehicles 
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can provide detailed information about their location, speed, and possibly additional information 

to a public or private entity, and that information is used to generate traffic/travel time 

information (San Diego Association of Governments 2017). For example, Waze, as a leading 

crowdsourcing mobile app, has millions of registered active users sharing their real-time traffic 

and road information, which can be potentially used to monitor traffic condition (Li et al. 2020). 

Meanwhile, different mobile apps, such as Toronto Buffalo Border Wait Time (TBBW), Border 

Wait Times, and Best Time to Cross Border, were also developed to collect border wait times 

from their users (Lin et al. 2015). Many third-party companies provide high-quality traffic data 

by aggregating crowdsourced traffic information, including but not limited to: 

• INRIX™ (http://www.inrix.com/).  

• HERE™ (http://here.com/). 

• Cellint™ (http://www.cellint.com/). 

• Telenav™ (http://www.telenav.com/). 

• TrafficCast™ (http://trafficcast.com/). 

• TomTom™ (http://www.tomtom.com/). 

• Cuebiq™ (https://www.cuebiq.com/). 

• Waze™ (https://www.waze.com). 

Driving data collected from CVs are another emerging data source. CVs include short-range 

radio communications technologies for vehicle-to-vehicle communications (V2V), where 

vehicles on the roadway communicate with one another, and vehicle-to-infrastructure 

communications (V2I), where vehicles on the roadway communicate with roadside technologies 

and devices. The Texas A&M Transportation Institute (TTI) conducted a SWOT analysis to 

compare different emerging data sources in crossing time estimation; the result indicated that CV 

technology is the one that provides the highest value for the enhanced border crossing time 

measurement system (Villa et al. 2017). Although CV-related technologies are still in early 

stages of development, they have been maturing, prototyped, and tested for a couple of decades 

and will be more promising (San Diego Association of Governments 2017). 

POTENTIAL SOLUTION FOR BORDER CROSSING TIME ESTIMATION 

Vehicle mobility data are a valued data source for evaluating traffic congestion. An et al. 

(2016) used GPS-equipped vehicle mobility data to measure urban recurrent congestion 

evolution patterns. The authors divided the study area into an equal-size grid and summarized the 

characteristics of trajectories within each grid in terms of the number of trajectories and mean 

velocity of all trajectories. The authors calculated the Mahalanobis distance to measure the 

variations of trajectory characteristics for a specific grid over a series of timestamps to capture 

urban recurrent congestion patterns (one month, 16,000 taxi vehicles, and a sampling rate of 

30 seconds). Iyer et al. (2018) proposed a deep learning-based congestion prediction model 

based on bus mobility trace data. The study calculated the speed of buses on each segment based 

on their GPS traces data. Based on the historical trends of speed at a given segment and its 

neighboring segments, a long- and short-term memory recurrent neural network model was built 

to predict travel speed in each segment. 

http://www.inrix.com/
http://here.com/
http://www.cellint.com/
http://www.telenav.com/
http://trafficcast.com/
http://www.tomtom.com/
https://www.cuebiq.com/
https://www.waze.com/
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Some estimation models were built based on real-time traffic volume and POE inspection 

time data. For example, Lin et al. (2014) developed two classes of multi-server models to predict 

border-crossing delay with vehicle arrival times and inspection times directly collected from a 

POE—Peace Bridge. Ramezani and Geroliminis (2015) proposed a method based on the position 

and instantaneous speed of probe vehicles to estimate the queue profile at intersections. Probe 

vehicles provide samples of their individual traffic state and aim to leverage the collective 

information of temporally and spatially dispersed probe data. The authors first used the velocity 

attribute of all probe data to classify them into two groups, including moving vehicles and 

stopped vehicles. Next, a clustering method was used to cluster the stopped vehicles into 

different groups representing cycles. Then, the authors associated the moving vehicles to cycles. 

Lastly, the authors calculated the discharging line and estimated the queue formation for each 

cycle to determine the front and the back of queue. The method was tested on the Next 

Generation Simulation dataset and simulated data. Khan (2010) proposed a cost-effective method 

for estimating the extent of queuing and delay at POEs based on microsimulation using VISSIM. 

A hybrid of sensor data was simulated to represent the accumulated number of arrivals and 

departures, which was then fed to an artificial neural network model to predict the queues and 

delays at POEs. Results showed that microsimulation and the artificial neural network modeling 

worked well for simulating border crossing time.  

Signal strength detection is also a potential solution to monitor traffic flow. For example, 

Miyagawa and Ogawa (2017) proposed a new system by using Bluetooth low-energy (BLE) 

broadcasting transmitted from a mobile application. In this system, the smartphone was used as a 

broadcaster using BLE, and two receivers were installed to record time and the received signal 

strength indicator of BLE signals for estimating crossing time. Crowdsourced driving data 

collected from mobile devices (e.g., smartphones) are also a valued data source in border 

crossing time estimation. For example, Lin et al. (2015) created a mobile app, TBBW. This app 

can not only show the current waiting time lagged from a POE (updated every hour) but can also 

collect user-reported waiting time by app users in real time. By combining the official data and 

crowdsourced data, TBBW can provide a better estimation of border-crossing delays at a finer 

temporal scale.  

With the advancement of big data analysis techniques, more studies are conducted to explore 

how to use big data analytics to cope with the emerging big datasets to provide a better 

estimation of crossing times. For example, Sankaranarayanan et al. (2016) used big data 

visualization approaches to investigate the patterns of airport crossing times, which can be 

potentially applied to visualize and extract the pattern of big mobility data crossing POEs. 
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CHAPTER 3: 
DATA COLLECTION AND PROCESSING 

This chapter describes the study site and research data analyzed in this study. We chose the 

PDN International Bridge as our testing site. We collected both the existing border-crossing 

information from the BCIS through Bluetooth and the CV data from Wejo for passenger 

vehicles. This study evaluated CV data collected from 3 consecutive years: from 2020 to 2022. 

In total 8 months of data, including November 2020, December 2020, November 2021, 

December 2021, September 2022 and October 2022, were evaluated in this study.  

STUDY SITE—PASO DEL NORTE INTERNATIONAL BRIDGE  

The PDN International Bridge is among the busiest POEs in the United States. Figure 1 

illustrates the aerial view of the PDN POE, which is located at 1000 S. El Paso Street on the U.S. 

side and on Juárez Avenue on the Mexican side. This POE operates 24 hours a day, seven days a 

week, and is dedicated to pedestrians (northbound and southbound) and passenger vehicles 

(northbound), with more than 10 million people traveling from Mexico to the United States each 

year at this location. Since the Wejo CV data examined in this project are specifically collected 

from the passenger vehicles, the PDN POE is a perfect study site to evaluate the effectiveness of 

Wejo CV data in border travel time estimation.  

 

Figure 1. Paso del Norte POE Aerial View. 
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BORDER CROSSING INFORMATION SYSTEM 

The current BCIS in El Paso was established by TTI with funds from TxDOT and FHWA. 

The BCIS was designed to measure travel times of commercial and passenger vehicles crossing 

the Texas–Mexico border. The BCIS uses RFID readers at commercial POEs and Bluetooth/Wi-

Fi sensors at POEs serving passenger vehicles. The Bluetooth/Wi-Fi sensors will regularly 

capture mobile devices’ signals (Bluetooth or Wi-Fi media access control [MAC] address) 

carried by the vehicles, drivers, or passengers at multiple locations along the path for each 

border-crossing trip. The captured MAC address will be transmitted to the BCIS server along 

with a captured timestamp and sensors’ IDs. By matching the Bluetooth MAC address at 

different locations (readers), the BCIS can calculate crossing time based on the captured 

timestamps difference. 

As illustrated in Figure 2, five Bluetooth readers are installed at the key locations along the 

PDN POE named PDN-BT 1–5: 

• PDN-BT1: the starting point to observe the queue, near the intersection of Juárez Avenue 

and 16 de Septiembre Street.  

• PDN-BT2: the intermediate point to observe the queue, near the intersection of Juárez 

Avenue and Ignacio Mejia Street.  

• PDN-BT3: the exit of the Mexican toll booth.  

• PDN-BT4: the international bridge.  

• PDN-BT5: the U.S. CBP inspection facility. 

 

Figure 2. Installation of Bluetooth Readers along the PDN POE. 
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CONNECTED VEHICLE DATA (WEJO)  

CVs are rapidly becoming the new paradigm of road transport, which has been widely 

believed to positively influence transportation safety, efficiency, and sustainability. CVs 

represent the unification of various connectivity technologies, enabling vehicles to communicate 

with other vehicles (V2V), transportation infrastructures (V2I), and the cloud (V2C) for 

achieving the goal of self-driving (Hoseinzadeh et al. 2020, Talebpour and Mahmassani 2016). 

Although most commercially available vehicles are still far from completely automating the 

driving task, most of them already could monitor the driving environment and vehicle 

movements through vehicular sensors. Many world-leading auto manufacturers, like Toyota™, 

General Motors™, BMW™, and Tesla™ among others, have ramped up the production of CVs, 

which could access and transmit vehicular sensors’ data to the cloud (Miles 2019). Many 

automotive data companies have also emerged to facilitate the use of CV data. Like Wejo, 

Otonomo, Smartcar, Vinili, and CarAlgo, these data companies bridge the data providers—auto 

manufacturers—with data users by ingesting, aggregating, and normalizing the raw CV data and 

delivering the enriched and organized datasets to end users (Miles 2019). 

The CV data are collected from vehicles, directly reflecting the dynamics of traffic mobility. 

For example, Wejo, as a leading CV data start-up, provides high sampling rates and 

multi-dimensional vehicle movements and driving event (e.g., hard braking, hard acceleration, 

and speeding) data. This data platform has currently partnered with multiple world-leading auto 

manufacturers and collected data from millions of vehicles with a sampling rate of three seconds 

per waypoint. Each waypoint describes the timestamp, location, and movement-related 

information (e.g., speed and heading) of a vehicle’s trajectory. Wejo claims that its CV data 

products could access over 90 different vehicular sensors and cover 95 percent of road networks 

in the United States, with about 12 billion data points collected every day at its best temporal 

resolution of every three seconds. Our preliminary studies in Texas also demonstrated that Wejo 

data have good spatiotemporal coverage in both urban and rural regions of Texas. CV data show 

great superiority in data quality, volume, consistency, and richness compared to traditional 

mobility data sources, making them a promising data source for monitoring urban mobility 

dynamics. 

In this project, we used the CV movement data provided by Wejo to estimate the travel time 

at the PDN POE. Each record in the movement data details the vehicle’s status in a trip (e.g., 

speed, heading, and location) with a specific timestamp. The CV data were reprocessed by Wejo 

and delivered to the Azure Cloud Storage account. The data were organized in the Apache 

Parquet format. We used an online big data analytics platform, Azure Databricks™, to process 

the big CV dataset. Azure Databricks supports the latest version of Apache Spark™, allowing its 

users to seamlessly integrate with any open-source libraries and quickly establish a fully 

managed Apache Spark environment. We primarily used Apache Sedona™ to load, partition, 

process, and spatially analyze the big CV data and used other open-source libraries (e.g., 

Datashader) to visualize the large dataset. 

The original Wejo CV data were pre-partitioned by geohash—a hierarchical geocode system 

dividing space into buckets of grid shape. In this study, we subset the Wejo data by using the 

geohashes, which covered the entire PDN POE. Figure 3 illustrates the geohash-partitioned CV 

data collected in October 2022 for the PDN POE, which were visualized through the Datashader. 
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Figure 3. Illustration of Wejo CV Data at the PDN POE. 

BORDER CROSSING TIME CALCULATION BASED ON BLUETOOTH 
OBSERVATIONS  

The collected Bluetooth observations from the BCIS can be used to measure the passenger 

vehicle crossing time. Crossing time is defined as the time it takes, in minutes, for a vehicle to 

reach the U.S. CBP’s primary inspection booth after arriving at the end of the queue (Sharma et 

al. 2018, Texas A&M Transportation Institute, 2021). This queue length is variable and depends 

on traffic volumes and processing times at each of the inspection facilities throughout the 

border-crossing process. The variable nature of the queue makes the installation location of the 

sensors critical. Since the queue of vehicles at the PDN POE usually can reach as far as 

PDN-BT1, as illustrated in Figure 1, this study defines the border crossing time as the time a 

vehicle takes, in minutes, to travel from PDN-BT1 to PDN-BT5.  

As mentioned previously, five Bluetooth readers are installed at key locations along the PDN 

POE. For a single trip, the vehicle can be identified at multiple locations. By matching the 
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captured Bluetooth MAC addresses at different pairs of Bluetooth readers, we could obtain the 

vehicle’s travel times crossing different monitored segments, as illustrated in Figure 4. In this 

study, we aimed to calculate the hourly average border crossing times at the PDN POE. To 

achieve this aim, we first needed to figure out how to sum the hourly average travel times on 

different monitored segments to obtain the aggregated border crossing time at one-hour intervals 

from PDN-BT1 to PDN-BT5. 

As illustrated in Figure 4, there were eight different combinations of segments (calculation 

options) we could choose to form a non-overlapping corridor reaching from PDN-BT1 to 

PDN-BT5. The longer segment usually requires more time to travel through it, leading to fewer 

vehicles’ travel times captured on this segment. In this study, we assumed: 

1. The shorter segment could capture more trips. 

2. The calculation option composed of more segments could capture more trips and lead to a 

more reliable hourly average travel time. 

3. The closer segments to the PDN-BT5 are more important than the farther segments in 

border crossing time calculation, which are more necessary to be kept because short 

segments ensuring more trips can be captured on them. 

Based on these three assumptions, we ranked the priority of these calculation options. For 

each one-hour interval, we started with Option 1 by summing up the hourly average travel times 

on these four short segments. If any of the segments in Option 1 did not capture enough trips, we 

calculated the border crossing time with Option 2, and so on. If all these calculation options had 

data missing on their segments, we marked that one-hour interval as free flow with the border 

crossing time as zero. 

 

BORDER CROSSING TIME CALCULATION BASED ON WEJO CV DATA 

To evaluate the effectiveness of Wejo CV data in border crossing time monitoring, we used a 

similar procedure to the Bluetooth data processing to calculate the hourly average border 

crossing time from Wejo CV data. 

Since the typical detection range of Bluetooth readers is around 100 meters (Honeywell 

2020), we first created 100-meter buffers around each Bluetooth reader location to extract the 

Wejo CV samples within each buffer. Figure 5 shows the created Wejo extraction buffers around 

each Bluetooth reader for the PDN POE. The CV data were collected from each trip with a 

high-frequency sampling rate—up to three seconds per sample. Therefore, there could be 

multiple waypoints captured from the same trip within each buffer. To eliminate the data 

redundancy, we grouped the CV waypoints within each buffer based on their Journey ID—the 

unique identifier for every single trip. Then we kept the earliest waypoint for each trip within the 

first four buffers (PDN-BT1 through PDN-BT4) and kept the latest waypoint for each trip within 

the last buffer (PDN-BT5). After obtaining the unique trip IDs captured in each buffer, we 

applied the same procedure as illustrated in Figure 4 to calculate the hourly average travel times 

based on the CV data. The obtained results were evaluated and compared with the Bluetooth-

based border travel times, which are introduced in Chapter 4. 
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Figure 4. Illustration of Border Crossing Time Calculation. 
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Figure 5. Wejo Data Extraction Buffers around Each Bluetooth Reader at the PDN POE. 
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CHAPTER 4: 
ASSESSMENTS OF CV-BASED BORDER CROSSING TIMES 

In this study, we calculated the hourly average border crossing times using CV data for each 

month and compared them with the Bluetooth-Time. For example, Error! Reference source not 

found. illustrate the calculated Bluetooth-Time and CV-Time for September 2022, which 

indicates that the Bluetooth-Time (red line) and CV-Time (blue line) appear to have similar 

results for the estimated border crossing times. To better assess the effectiveness of CV data, we 

further conducted two assessments:  

• Temporal coverage assessment: This assessment aimed to investigate the percentage of 

one-hour slots in which we could obtain enough CV samples to estimate border crossing 

times. 

• Similarity assessment: This assessment aimed to assess the statistical similarity between 

the Bluetooth-Time and CV-Time. We used three measures—the correlation coefficient, 

the root mean square error (RMSE), and the mean absolute percentage error (MAPE) to 

quantify the similarity between the Bluetooth-Time and CV-Time.  

 

Figure 6. Comparsion between Bluetooth-Time and CV-Time in September 2022. 

TEMPORAL COVERAGE ASSESSMENT 

To evaluate the practical value of CV data in real-world border-crossing monitoring, we first 

need to figure out whether we could obtain sufficient CV data samples from the CV data 

provider, Wejo, to generate continuous monitoring results at the POE. In this study, we generated 
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hourly averaged border travel times based on the CV data. We sampled the CV data from 3 

consecutive years: 2020 to 2022. In total 8 months of data including November 2020, December 

2020, November 2021, December 2021, September 2022 and October 2022 were available for 

this study. As introduced in Chapter 3, eight calculation options could be used to generate border 

crossing times. For each one-hour slot, if the border crossing time was generated through the 

calculation procedure introduced in Chapter 3, we marked this slot as a CV-covered slot; 

otherwise, it was marked as a CV-uncovered slot. We conducted the temporal coverage 

assessment for all eight months to calculate the percentage of the uncovered slots for each 

month.  

Figure 7 illustrates the mean monthly coverage rate for each year. It clearly shows that 

although the average coverage rates of the data in 2020 and 2021 are low, an exponential growth 

was observed in 2022 in terms of the data coverage, implying the growing potential of CV data 

in real-world applications.  

 

Figure 7. Monthly Average of CV-covered Slots Percentages for 2020 to 2022.  

In this study, only the data for 2022 was further investigated due to its high coverage 

percentage. Figure 8 illustrates the results of the temporal coverage assessment for the September 

and October datasets 2022. The orange color is assigned to the cells with sufficient CV 

observations, and the white color in these figures indicates no sufficient CV observations to 

support any one of the eight calculation options to generate an estimation result for that one-hour 

slot, which is regarded as a CV-uncovered slot. 

As illustrated in Figure 8, 512 of 720 one-hour slots (71.11 percent) in September 2022 were 

marked as CV-covered slots, which means we could generate border crossing times based on the 
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CV trips captured by Wejo in these slots. The October dataset showed a slightly broader 

temporal coverage, with 547 of 744 slots (73.52 percent) having sufficient CV trips to estimate 

border crossing time (see Figure 9).  

Given the penetration rate of Wejo CVs in 2022, this evaluation showed roughly 70 to 

75 percent of the one-hour slots with enough Wejo samples to estimate border travel times. The 

results also indicated that the Wejo CV data usually achieved a higher temporal coverage rate on 

weekend days (September had 79.69 percent, and October had 79.59 percent), up to 10 percent 

higher than the monthly average temporal coverage rates. We can also visually identify that the 

midnight and early morning hours (midnight–9 a.m.) have more CV-uncovered slots, which 

could be caused by the low volume of border-crossing passenger vehicles at these hours. 

The reasons limited the temporal coverage of Wejo in the PDN POE could be twofold:  

• Given the data usage agreements between the data provider (Wejo) and its partnered 

original equipment manufacturers (OEMs), only one OEM currently agreed to share their 

data for this pilot study. The actual existing CV data is much more than the amount we 

tested but not available to use due to the license issue.  

• Access to the Mexico-registered vehicles’ data was limited in the 2022 Wejo dataset. All 

the border-crossing trips used in this study were collected from U.S.-registered passenger 

vehicles. 
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Figure 8. Temporal Coverage Assessment Results of the CV-Time in September 2022. 

 
Figure 9. Temporal Coverage Assessment Results of the CV-Time in October 2022. 

September

CV-Covered Slot: 512

Temporal Coverage

Rate: 512/720 = 71.11 %

Weekend Days
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CV-Covered Slot: 547

Temporal Coverage

Rate: 547/744 = 73.52%

Weekend Days
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SIMILARITY ASSESSMENT 

Besides assessing the temporal coverage of CV data at the border crossing, we also need to 

assess how accurate the CV-Time can represent the hourly averaged border crossing times. Since 

the Bluetooth observations collected from the BCIS were the only available data source to 

monitor border-crossing trips at the PDN POE, we evaluated the similarity between the 

Bluetooth-Time and CV-Time in September and October 2022 to assess the practical value of 

using CV data in border crossing time monitoring.  

In this study, we first selected the one-hour slots with both Bluetooth-Time and CV-Time. 

Since the Bluetooth data resolution is 15 minutes, the hourly average for the Bluetooth-Time 

calculated as the average of 4 reading for each quarter in each hour. Then, we calculated the 

correlation coefficient, the RMSE, and the MAPE between the Bluetooth-Time and CV-Time to 

quantify their similarities and differences each month. The correlation coefficient is one of the 

most used measures to assess the strength of the relationship between two groups’ values. The 

RMSE and MAPE are used to evaluate the difference of two groups’ values, which are 

commonly used to assess the quality of predictions. The following equations illustrate how to 

calculate these measures based on two data groups with the same sample size: 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
∑ (𝐴𝑡  −  𝐴̅)𝑛

𝑡=1 (𝐹𝑡  −  𝐹̅)

√∑ (𝐴𝑡  −  𝐴̅)2 ∑ (𝐹𝑡  −  𝐹̅)2𝑛
𝑡=1

𝑛
𝑡=1

 

𝑅𝑀𝑆𝐸 = √
∑ (𝐴𝑡  − 𝐹𝑡)2𝑛

𝑡=1

𝑛
 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ |

𝐴𝑡  − 𝐹𝑡

𝐴𝑡
|

𝑛

𝑡=1

 

Where 𝐴 and 𝐹 represent two sample groups. Each of them contains 𝑛 samples; 𝐴𝑡 and 𝐹𝑡 

represent the 𝑡 − 𝑡ℎ sample in each group; and 𝐴̅ and 𝐹̅ represent the mean values of these two 

groups. Table 1 and  

 

Table 2 summarize the similarity assessment results of the CV-Time for September and 

October 2022 datasets, respectively. Table 1 shows that when applying the base value of the 

calculation threshold (which means that as long as there is one trip captured on the segment, we 

could generate hourly travel times from it), the correlation between the Bluetooth-Time and CV-

Time is 0.73, the RMSE is around 22.37 minutes, and the MAPE is around 43 percent in 

September 2022.  
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Table 1. Similarity Assessment Result of the CV-Times in September 2022. 

Measures  Values 

Bluetooth-covered one-hour slots 720 

CV-covered one-hour slots 512 

Correlation 0.73 

RMSE (in minutes) 22.37 

MAPE 43.58% 

 

 

Table 2. Similarity Assessment Result of the CV-Times in October 2022. 

Measures  Values 

Bluetooth-covered one-hour slots 744 

CV-covered one-hour slots 547 

Correlation 0.81 

RMSE (in minutes) 21.16 

MAPE 39.77% 

 

 

 

Table 2 shows the similarity assessment result of the October CV-Times. The CV-Time and 

the Bluetooth-Time in October show a slightly higher correlation (0.81 versus 0.73), a lower 

RMSE (21.16 versus 22.37), and a lower MAPE (39.77 percent versus 43.58 percent) when 

applying the base threshold.  

The similarity assessment results indicated that the CV data are a valuable data source that is 

capable of producing similar estimations for border crossing times as the BCIS-generated results. 

We achieved a high correlation between the CV-Time and Bluetooth-Time in both September 

and October 2022 with a value of 0.73 and 0.81. 
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CHAPTER 5: 
BORDER CROSSING TIME MODELING USING CV DATA 

Chapter 4 demonstrates that the CV data are a promising data source. The CV-Time is highly 

correlated with the Bluetooth-Time, with a correlation value of approximately 0.8. As previously 

discussed, the Bluetooth-based BCIS is costly in terms of installation and maintenance. 

Therefore, there is a practical necessity to explore further whether it is possible to accurately 

model the Bluetooth-Time based on the CV data. 

This chapter introduces the modeling efforts to improve border crossing time estimation 

based on the CV data. We used the hourly averaged Bluetooth-Time as the response variable, 

and the CV-Time and other features as predicting variables. In this study, we used 70% of the 

data in each month as the training dataset to calibrate the model and tested the model on the rest 

30% of the dataset. A total of 717 one-hour slots in the September and October 2022 dataset, 

containing both Bluetooth-Time and CV-Time, were used to train the model. A total of 336 slots 

in the dataset were used for testing and evaluating the model. This process could further evaluate 

the effectiveness of the proposed model. More importantly, it could demonstrate the capability of 

the pre-calibrated model for estimating future border crossing times.  

In this study, we first built different ordinary least squares (OLS) linear regression models to 

estimate the Bluetooth-Time based on the CV data. Three measures, including R squared (R2), 

RMSE, and MAPE were used to assess the performance of the models. R2 is one of the most 

used statistics in model performance evaluation. R2 represents the proportion of the variations in 

the response variable that is predicted from the predicting variable(s), which can be calculated 

through the following equation: 

𝑅2 = 1 −
𝑇ℎ𝑒 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 𝑜𝑓 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 

The total sum of squares (proportional to the variance of the data) 
 

BASIC AND TRANSFORMED OLS MODELS BASED ON CV-TIME ONLY  

In this study, we first built a basic OLS linear regression model (Simple OLS) using the 

CV-Time alone as the predicting variable and the Bluetooth-Time as the response variable. 

Error! Reference source not found. is a chart correlation plot of the CV-Time and the 

Bluetooth-Time in the training dataset (September and October 2022 dataset). The chart 

correlation plot visualizes the distribution of each variable on the diagonal, the bivariate scatter 

plots with a fitted line on the bottom of the diagonal, and the value of the correlation plus the 

significance level as stars on the top of the diagonal. Each significance level is associated with a 

p-value (0.001, 0.01, and 0.05) and a symbol (***, **, and *).  



 

Center for International Intelligent Transportation Research 
Texas A&M Transportation Institute Page 24 

 

Figure 10. Chart Correlation Plot between the Bluetooth-Time and the CV-Time in the 

Training Dataset in September and  October 2022. 

The Bluetooth-Time and the CV-Time are significantly correlated with a high correlation 

coefficient (0.82) and follow a linear relationship, as illustrated in Figure 10. Therefore, we built 

an OLS model to represent the linear relationship between the Bluetooth-Time and the CV-Time 

(Simple OLS). The modeling result and the fitted functional form of Model 1 are detailed in 

Table 3. The result indicates that the CV-Time is a significant predictor for estimating the 

Bluetooth-Time. With the CV-Time as the sole predicting factor, 67 percent of the variance in 

the Bluetooth-Time can be explained by the fitted linear model. 

 

Table 3. Simple OLS Result Based on the CV-Time Only. 

Model Parameters Estimate (STD) 

Intercept -0.44 (1.18) 

CV-Time 1.13 (0.03) *** 

R2 0.67 

Fitted functional form 𝐵𝑙𝑢𝑒𝑡𝑜𝑜𝑡ℎ − 𝑇𝑖𝑚𝑒 =  −0.44 +  1.13 ∗  𝐶𝑉 − 𝑇𝑖𝑚𝑒 

The training dataset contains 717 observations; the testing dataset contains 336 observations. 

STD stands for the standard errors, which are included in the parenthesis. 

*** represents significant 99 percent level based on p-values. 
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Typically, all the variables in a linear regression model need to be normally distributed. 

However, the predicting and response variables in Model 1 are obviously right skewed, as 

illustrated in Error! Reference source not found.. Therefore, we performed a square root 

transformation on both variables to normalize them. The chart correlation plot of the transformed 

Bluetooth-Time (Bluetooth_Trans) and transformed CV-Time (CV_Trans) is shown in Figure 

11. By performing the square root transformation, both variables in the training dataset can better 

follow the normal distribution, and the correlation coefficient increased from 0.82 to 0.84.  

 

Figure 11. Chart Correlation Plot between the Square Root Transformed Bluetooth-Time 

and the CV-Time in the Training Dataset in September and October 2022. 

Based on the transformed Bluetooth-Time and CV-Time, we built an additional OLS 

model (Transformed OLS). The modeling result and the fitted functional form of Model 2 are 

detailed in Table 4. The result indicates that the CV-Time is a significant predictor for estimating 

the Bluetooth-Time. By performing the square root transportation, Model 2 achieved a higher 𝑅2 

compared to Model 1 (0.70 versus 0.67), indicating that more variance in the Bluetooth-Time 

can be explained by the fitted Model 2 than Model 1.  
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Table 4. Transformed OLS Result Based on the Square Root Transformed CV-Time Only. 

Model Parameters Estimate (STD) 

Intercept 0.06 (0.14) 

CV_Trans 1.02 (0.03) *** 

R2 0.70 

Fitted functional form 𝐵𝑙𝑢𝑒𝑡𝑜𝑜𝑡ℎ − 𝑇𝑖𝑚𝑒 =  (0.06 +  1.02 ∗ |√𝐶𝑉 − 𝑇𝑖𝑚𝑒| )
2
 

The response variable in this model is the square root transformed Bluetooth-Time. 

The training dataset contains 717 observations; the testing dataset contains 336 observations. 

STD stands for the standard errors, which are included in the parenthesis. 

*** represents significant 99 percent level based on p-values. 

ADDITIONAL CV-GENERATED VARIABLES  

Besides the CV-Time, we also explored whether there are any other variables that could be 

generated from the Wejo CV data to improve the model performance in the border crossing time 

estimation. We believe the traffic congestion could directly influence the traffic volume and the 

vehicles’ driving speeds. Therefore, the hourly aggregated Wejo CV volumes and driving speeds 

at different locations (Bluetooth readers) could be potential variables to be considered in the 

modeling effort. Additionally, the traffic volume would be different over the weekend or the rush 

hours which could potentially be effective as an input parameter. 

In this study, we created 22 additional CV-generated variables to capture the traffic volume, 

and the driving speed dynamics at different locations along the PDN POE aggregated on an 

hourly basis. As introduced above, five Bluetooth readers are installed along with the PDN POE, 

and we created five 100-meter buffers around each reader to extract CV data. Therefore, we 

created four additional CV-generated variables to depict the hourly aggregated CV traffic 

volume and their driving speeds at five different locations when driving through the PDN POE. 

Since the traffic volume and crossing times are significantly different during rush hours (7am to 

9am or 4pm to 7pm) and on weekends. Therefore, we added two additional temporal variables to 

distinguish whether a one-hour slot is during rush hours or on the weekend. (22 variables = 4 

speed relevant variables × 5 locations [CV extraction buffers] + 2 temporal variables). These 

new variables are explained in Table 5. 
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Table 5. Description of Additional CV-Generated Variables. 

Feature Name Feature Description 

avg_spd_btX Hourly average CV driving speed at the Bluetooth reader X 

85%_spd_btX 85th percentile of the hourly average CV driving speed at the Bluetooth reader 
X 

max_spd_btX Maximum hourly CV driving speed at the Bluetooth reader X 

med_spd_btX Median of the CV driving speed at the Bluetooth reader X 

isWeekend Boolean variable indicates whether it is a weekend day (1) or not (0) 

isRushHour Boolean variable indicates whether it is a rush hour (1) or not (0) 

X = 1, 2, . . ., 5 in this study. For example, avg_spd_bt1 represents the hourly average speed within the 

100-meter buffer around PDN-BT1. 

RANDOM FOREST MODEL 

Random Forest (RF) is one of the commonly used machine learning models capable of 

handling classification and regression problems. The RF model combines the result of series of 

decision trees (a forest) to make the model more robust. The RF method reduces risk of 

overfitting, provides flexibility, and it is easy to determine feature importance. As a result, a RF 

model for the months of September and October 2022 was generated assuming 70 percent of the 

data is dedicated to the training dataset and 30 percent is allocated to the test dataset. The model 

was trained by assuming 10 trees as estimator and squared error as the optimizing criterion. To 

investigate the contribution of each variable in the resulting model and select the features that 

have the majority of the contribution to minimize the model complexity, a feature selection 

process was run with the results shown in Error! Reference source not found.. The result 

shows that the topmost contributing features comprises of CV-Time, average speed at BT3, 85% 

speed at BT3, 85% speed at BT4 and average speed at BT2. 
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Figure 12. Random Forest Model Feature Importance. 

Based on the 5 most contributing features in the wait time estimation, we rebuilt a simplified 

version of the random forest model. The performance for both the original model with all 

variables and the simplified model with selected variables is presented in Error! Reference 

source not found.. 

 

Table 6. Performance of Random Forest Models with All and Selected  Variables. 

Dataset 
All variables  Selected variables  

RMSE MAPE RMSE MAPE 

Training dataset  7.31 minutes 15% 6.52 minutes 12% 

Testing dataset  15.50 minutes 26% 14.19 minutes 29% 

 

GRADIENT BOOSTING MODEL 

Gradient boosting is a type of machine learning boosting. It relies on the intuition that the 

best possible next model, when combined with previous models, minimizes the overall 
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prediction error. Gradient boosting creates a small ensemble from the data and generate a model 

using that data. Then, based on the performance (gradient of the error) it creates the next model 

with sampling a new ensemble. We are using the XGBoost library to implement the gradient 

boosting algorithm, which is one the well-known libraries to implement this algorithm. The data 

used for this model is the same as the one used in the random forest model to compare the 

performance. In order to simply the model and make the modeling process more feasible, a new 

model was built which only includes the five most contributing features (Error! Reference 

source not found.). Error! Reference source not found. shows the RMSE and MAPE 

performance measures for both gradient boosting models using all 23 introduced variables and 

selected top 5 variables. 

 

Table 7. Performance of the Gradient Boosting Models with All and Selected Variables. 

Dataset 
All variables  Selected variables  

RMSE MAPE RMSE MAPE 

Training dataset 5.27 minutes 11% 7.31 minutes 15% 

Testing dataset  14.13 minutes 25% 15.50 minutes 26% 

 

MODELING RESULTS COMPARISON  

In this study, we compared the performance of these three models based on two assessment 

measures: RMSE and MAPE. We also included the directly calculated CV-Time without 

modeling in the comparison to evaluate whether the modeling efforts could improve the 

estimation accuracy. The comparison results are detailed in Table 8. 

 

Table 8. Modeling Results Comparison based on the test dataset. 

Models Without 
Modeling 

Simple OLS Transformed 
OLS 

RF GB 

RMSE 21.67 18.90 19.41 16.04 15.50 

MAPE 42% 45% 42% 28% 25% 

“Without Modeling” indicates that we directly calculated the RMSE and MAPE between the Bluetooth-

Time and CV-Time in the testing dataset. 

Without modeling, the RMSE between the directly calculated CV-Times and the Bluetooth-

Times in the testing dataset is 21.67, and the MAPE is 42 percent. By fitting a simple linear 

regression model with the CV-Time as the only predicting variable (Simple OLS), the estimate 

accuracy can be improved with the RMSE decreased to 20.60. The results also indicate that 

performing the square root transformation on the Bluetooth-Time and the CV-Time could 

significantly improve the model’s performance and robustness, resulting in a better estimation 

result. The R2 increased from 0.66 to 0.70. 
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The OLS, random forest (RF) and gradient boosting (GB) algorithm results based on their 

significant features are summarized in Error! Reference source not found..  The result shows 

that the GB has the best performance among the introduced models considering both RMSE and 

MAPE factors. The OLS is significantly less accurate compared to the RF and GB if we only 

consider the MAPE performance measure. Consequently, it is suggested to utilize either RF or 

GB rather than OLS. The GB model has slightly better performance compared to RF. It is worthy 

to note that both RF and GB models have smaller number of features (only 5 features) compared 

to the OLS model while they performed better than the OLS. 
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CHAPTER 6: 
STREAMING DATA PROCESSING 

As we mentioned in chapter 5, the 2022 data we received is a streaming data product, which 

means the data was generated, aggregated, and delivered to us in near real time. The streaming 

data analysis is different in nature from the historical data although both of them represent the 

same amount of information. In order to analyze the streaming data, it is required to design an 

automated system that captures the data, analyzes the data, and updates the status (result) of the 

system. Figure 13 summarize the steps to achieve this goal. This system copies the data to a 

compatible storage service. Then, it runs the analysis and updates the dashboards waiting for the 

result.  

 

Figure 13. streaming data analysis process. 

The main difference between the streaming data analysis and the historical data analysis is that it 

is necessary to define a trigger for streaming analysis to automatically execute the analysis as 

soon as the data is available. One of the most successful and saleable solutions to define a trigger 

and accomplish this task is Azure Data Factory (ADF). ADF is provided by Microsoft Azure and 

is able to automate the large scale analyzes defined in different Azure services. Among these 

services we used Azure Blob storage and Azure Databricks to store and analyze the received 

streaming data.  

In this project, the raw data was being delivered to a S3 bucket by Wejo support team on hourly 

basis. This data was moved to a blob storage on Microsoft Azure service to be accessible by 

Azure Databricks. Although this step is expensive and time consuming, it is necessary for the 

prototype implementation. A better solution would be achieved by asking the data provider 

directly deliver the data to a Blob Storage on Azure which can be easily integrated with the rest 

of the analysis and visualization tools. The ADF has the ability to copy the data from AWS 

bucket to an Azure Blob storage securely and conveniently. By adding a short script to the ADF 

setting makes it possible to trigger the copy event whenever a new file is added to the S3 Bucket 

in AWS.  

Figure 14 represents the flowchart of the designed prototype. The data provider (Wejo) delivers 

the data on a S3 bucket in AWS hourly. The designed trigger in ADF detects the new data and 

starts copying the new data to an Azure blob storage. Whenever all the new files covering one 

hour are successfully copied to the destination Blob in Azure, a flag will be raised that the data is 

ready. Then, the ADF initiates the analysis by Databricks. The program in Databricks that 

estimated the border crossing will be same as the historical one with only one difference. The 

streaming data analysis scope is much smaller (it only deals with one-hour data). Assuming the 

final figure showing the history of the border crossing over the past few hours and the current 

one will be shown on a publicly available website, the server can pull the data generated with 

Azure Databricks. The result is stored in the Azure Blob and again ADF is in charge to notify the 

server that the data is ready to be pulled.  

Capture the 
data

Copy the data 
to a Blob

Trigger the 
analysis

Update the 
dashboard
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Figure 14. Streaming Data Ananlysis Prototype Flowchart. 

 

  

Wejo • Delivers the data to an Amazon 
S3 Bucket hourly

ADF • When a new file/folder populated in S3, it 
copies it to an AWS Blob storage

ADF • Triggers the analysis if the 
data was successfully copied

Azure 
DataBricks

• Run the analysis and calculates the estimated 
crossing time for the current hour

Website • Server pulls the estimated crossing time 
from Blob and updates the figure
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CHAPTER 7: 
CONCLUSIONS AND LIMITATIONS 

CONCLUSIONS 

POEs are gateways for international trades, which play an important role in the U.S. 

economy. Effectively and accurately monitoring border crossing times is of great importance in 

border transport management, which benefits various stakeholders. This project is among the 

first to comprehensively evaluate the effectiveness of the market-available CV data provided by 

Wejo in congestion studies at border crossings.  

In this study, we developed a set of big data analytic tools to process Wejo CV datasets. 

Meanwhile, we evaluated the temporal coverage of Wejo CV data at the PDN POE and its 

correlation with the existing Bluetooth-Time. This study developed different models to estimate 

the Bluetooth-Time based on CV-generated variables. The main findings are summarized as 

follows: 

• Bluetooth observations and Wejo CV data can generate highly similar results for border 

crossing times with a correlation efficient around 0.8. 

• The best fitted model based on the combination of CV-Time and additional CV-generated 

variables can produce an effective model to estimate Bluetooth-Time with an RMSE of 

15.5 mins and a MAPE of 25 percent. 

• A significant increase was observed in 2022 CV data, implying the growing potential and 

practical value of CV data in border crossing management. However, we also need to 

acknowledge that the penetration rate of the 2022 Wejo dataset collected from a single 

OEM was still insufficient for our study site (the PDN POE), resulting in around 30 

percent of the testing hours lacking Wejo samples.  

Given these findings, the Wejo CV data are a potential and promising data source for 

monitoring border crossing times. The data can be used to supplement the existing BCIS at El 

Paso and could be treated as an alternative solution when the BCIS is down for maintenance. 

Although the streaming CV data for border regions is only available from one of Wejo’s 

partnered OEMs due to the license issue, the highly accurate modelling results indicate the 

possibility of replacing the existing Bluetooth-based system with the CV data if Wejo could 

make all OEMs’ data available and continuously provide sufficient CV samples at all hours 

every day. 

LIMITATIONS 

This current project could be improved from two perspectives: improve the experimental 

settings and extend the evaluation period. Due to data licensing limitations, we only examined 

several months of CV data at one POE—the PDN POE. Therefore, the performance of Wejo CV 

data for other POEs could be different. This evaluation was primarily conducted based on the 

2022 Wejo data, majorly collected only from one OEM. Therefore, around 30 percent of the 

testing hours lack sufficient Wejo samples to generate valid estimates for border crossing times. 
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For further determining how to incorporate the CV data into the current border-monitoring 

system, there is a practical necessity to evaluate more CV data to see if a broader temporal 

coverage at different POEs over a more extended study period can be achieved.  
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